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The literature offers a number of approximations for analytically and/or efficiently com- 
puting the probability of collision between two space objects. However, only one of these 
techniques is a completely analytical approximation that is suitable for use in the prelim- 
inary design phase, when it is more important to quickly analyze a large segment of the 
trade space than it is to precisely compute collision probabilities. Unfortunately, among 
the types of formations that one might consider, some combine a range of conditions for 
which this analytical method is less suitable. This work proposes a simple, conservative 
approximation that produces reasonable upper bounds on the collision probability in such 
conditions. Although its estimates are much too conservative under other conditions, such 
conditions are typically well suited for use of the existing method. 

Notation 

Dwcriptwn. Exampk Represents 
Lower case italic type a scalars 
Upper case italic type -4 matnces 
Bold type (either case) r vectors 

I. Introduction 

One of t.he new challenges of flying close format.ions of sparecrafl over mission durat,ions of mont,hs to years 
is to maintain adequate collision avoidance mar,%s. In general, comput.ation of collision probability requires 
quadrat.ure, which can be cumbersome for conceptual design and t,rade shdies. A number of approximations 
have a.ppeared in the literabure, mme of which t,he sequel d I  describe, t,hat. offer a wide range of t,rade- 
offs between accuracy or conservat.ism, applicability to the format,ion flying problem, and comput.at.iona1 
complexity and efficiency. 

In the design phase, it. is important to underst.and the relat.ionship between collision avoidance objectives 
and navigation system capabilities. Especially in the early concept.ual design phase, accuracy is less important. 
t,han insight. In such an early phase of design, om needs the ability t.0 implement. simple equations in a 
spreadsheet 50 as to examine large wedges of t,he t.rade space. One can accept coarse approximat.ions, so 
long as these approximat.ions are not. too lacking or a.bundent. in conservat.ism. To this end, after revieaing 
and discussing t.he literature, this paper proposes a conservative approximatmion for collision pr0babilit.y. A 
designer might use this approximation in t.he process of conceptually studying t,he flight dynamics issues for 
a.n orbital formation flying mission. 

'Flight Dvnamics Analysis Branch, Code 595, Greenbelt, MD 207'71. Fax: 301-285-7526. Email: R u s  
sell.Carpenter&nasagov. This material is declared a work of the  C.S. Government and is not subject t o  copyright protection 
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where w1 is the instantaneous orbit.al angular velocity of spacecraft 1. The relative position is uncertain due 
to naiiigation errors, e, 

where f = E[r] is the nomind relative pasition vector. The associated covariance matrix. in whatever 
coordinates the quantities of Q 1 are specified. is 

r = F + e  (4 1 

where 

Not,e t,hat the equations above only consider posit,ion errors Note also that t.he crosscovariance matrix P R ~ R ~  
and its transpose often contain significant correlations for t,he formation flying problem, since int,ersatellite 
measurements such as crosslink ranges may be wed in t.he na\igat,ion filt,er. 

Figure 1 illustrates t.he problem geometry. The 
figure depicts two local coordinate frames that are 
fixed to planes: the tangent plane and the conjunc- 
tion plane. The former is tangent to the nominal 
trajecctory of spacecraft 1, and has its correspondmg 
basis vectors defined as follows, 

The conjunct.ion hame contains the relat.ive posit>ion 
vector. with basis vectors defined as 

i 

(12) Fignre 1. Conjunction geometry. Warmer colors indi- 
cate regions of conjunction plane with higher probabiii- 
ties of penetration. SpacecraR paths represent nominal 
trajectories. 

Due to the navigation errors, the point at which the 
path of spacecraft 2 relat,ive to spacecraft 1 pene- 
t.rat.es the conjunction plane is uncertain, which Fig- 
ure 1 illustrat,es by associating color warnit,h w5t81i 
probability of penetration. The conjunction plane 
generally cuts an oblique cross-section of the t.hree- 
dimensional error ellipsoid associat,ed with t.he nav- 
igation errors, as Figure 2 shows. 
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The goal of colhsion avoidance is to ensure that 
the actual relative position vector reinails outside 

2 seme collmon avoidance region, whch in tfLls work 
is taken as a sphere of radms a. as Figure 3 de- 

- - picts 4 correspondmg colhwon avoidance reqmre- 

(15) 
g 

5 
The problem just defined is qmte simlar to the 

problem of calculatmg the probabhty for a smgle 
% x 

5 - - r 

J nient would be 
- - - 
r 
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where e is as small as practlcable 
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spacecraft to  avoid a piece of space debris The pn- 
mary differences are as follows In debns encoun- 
ters. the relative orbits between the spacecraft and 
the debris are generally qmte dBerent, so that very 

Figure 2. mge-,,,, of coqjnnctbn upper bnef and mfrequent conjuctions between them oc- 
hdf  of -e, heiht above p k  indicates probabic cur In these encounters, the relative velocity IS 

L Cms-fection of Error Ellipwid 

* in the Plane Of wGunction* Lower half Of 
figure depicts cross-&ion of %dimensional error ellip- 
soid, which is repeated in outline form in upper haif. 

typically qwte high, and the relative motion is es- 
sentially rectdinear over the bnef penod near closest 
approach It IS a b  generally true that the uncer- 

t,aint.y assaciat.ed with the debris orbits is quite large in comparison n4th t.he combined crosssectional area 
of the spacecraft and the debris. and that lit,tle or no crosscorrelat,ion exists between t,he est,imated st.at,es 
of the spacecraft and the debris. In most. format,ions and many constellat,ions, none of these conditions is 
likely to  be satisfied. 

111. Background 

Foster and Est-' show that under certain conditions 
t,ypical of most debris encounters, only the projection 
of the three-dimensional error ellipsoid ont,o the con- 
junction plane at the point of closest approach need 
be considered when computing t,he probability- of col- 
lision. Akella and Alfriend2 show the equivalence be- 
t.ween integration over the conjunction plane and inte- 
grat.ion over t.he full three-dimensional ellipsoid, under 
these condkions. The upper half of Figure 2 represents 
a sect.ion of this two-dimensional density as height 
above t.he conjunction plane, and the color mapping 
of the conjunct~ion plane in Figures 1 and 3 represents 
contours of equal probabilit,y in this t,wo-dimensional 
density. Thusl to determine the probability of colli- 
sion: one need only find the cumulative density ahve 
the collision avoidamre region, i.e. t,he volume bounded 
above by t.he density funct,ion, and along its periphery Figure 3. Collision avoidance geometry. Cross 
by t,he collision avoidance boundary. This integral in ~ ~ ~ ~ r ~ b ~ ~ ~ F ~ ~ ~ ~ n  :$==id 
general requires quadrature. A number of approxi- 
ma.te alternatives to quadrature have appeared in the 
literature, among which Patera3 describes a rediict.ion 
of t,he t.wo-dimensiona1 integral to a numerical line integral. t,hat. can adequately describe t,he probability for 
complex avoidance regions, so long as t,he region of uncertaint,y is symmetric. 

Chan4 describes an approximate alt,ernat.ive to quadrature that, is complet.ely analytical, and t,herefore a 
good candidate for t.he t,ype of algorit.hm sought. in t.his work. This approach is based on an approximate 
tran.sformat,ion of t,he debris avoidance problem t,o the problem of computing the probabi1it.y that. a realization 
of R symmetric, t,wodimensiona.l random variable lies within a circular disk. when the mean of the random 
variable does not coincide with the center of t,he disk. This is an example problem in the 1965 edition of 

intersect the avoamm region. 



P a p o u h ~ . ~  and t,he resuking densit.y cont.ains a modified Bessel funcbion. Chan expresses the density in series 
form, int.eegrat.es term by term to find an approximation of the probability. shows t,hat. in most, cases typical of 
debris avoidance. retaining on1)- the first' term is adequat.e. and finally gives error bounds on each t,runcation 
of t,he series. Since in most realistic problems, the covariance is not isot.ropic, i.e. its error ellipsoids are 
not, spheres, Chan introduces a second approximation. If t,he avoidance region is circular, a coordinate 
system rotation t.0 t,he covariance's principal axes ail1 at least remove the complexity introduced bs  any 
correla.tions. However, t.he method of int.egrat,ion used in Papoulis' example relied on t,he circular symmet.ry of 
the isotropic density. A common technique of introducing a non-isotropic dilat.ion of co0rdinat.m to circularize 
the covariance will not, work in this case, since this will make the circular avoidance region into an ellipse. 
Chan addresses this problem by simply substit.uting a circular avoidance region that. has the same area as t,he 
ellipse representing the actual avoidance region, in t.he dilat.ed coordinates. fteference 4 documents agreement. 
to wit.hin tao or three  significant^ digits between t,his met.hod and several ot,her numerical dt,ernat,ives, for 
certain conditions typical of many debris encounters. However, the author notes that. "it. is possible to assign 
values t.0 t,hese parameters such that, this model yields poor approximations,'' and in particular suggests t.hat. 
whenever either the size of t.he avoidance region or t.he nominal miss dist,ance is of t,he same order as t,he 
standard deviation of the isotropic densit.y' the method will fail. Chan suggests breaking up the cross-section 
in order to address this shortcoming, but. does not describe how one should do t,his. 

Figure 4. Relative motion during a portion of one orbit 
for a formation or constellation. The variable T rep 
resents a nodecreasing index, such s time or true 
anomaly, and 7. represents its value at the time of cks- 
est approach. 

Unfortunat.ely. the conditions under which the 
volume integral may be reduced t.o an area integral 
in the conjuct,ion plane are not. typical of most close 
encounters bet.ween spacecraft in a constellation or 
formation. Most importantly, the re1at.ix-e velocit,y 
is generally much lower, so t,hat t,he time t.he space- 
craft spend within close proximity to one another 
is significant.. .4s a result, one may not. ignore the 
time-varying nature of the relat,ive motion and t,he 
relat,ive error covariance, as Figure 4 illust.rates. 

Peterson6 suggests that anytime the velocity un- 
certainty approaches the magnitude of the relative 
velocity itself, the velocity uncert,amty should not, 
be ignored. For such "long-term encounter" casts. 
Chan' propose an extension of Reference 4. In this 
work, after a wries of scale t.ransformat,ions and rc+ 
tat.ions, t.he avoidance region becomes an ellipsoid 
rotating about, an isot.ropic covariance, cont,ained 
with a three-dmensional t.angent hypersurface t,hat. 
corresponds to a toroid for many relevant, circum- 
st*ances. In such cases, the boundaries of the rela- 
tive motion in the t.ransformed coordinat.es may be 

approximated by ellipses, but. in order to make use of the approximat~e analytical technique of Reference 4, 
Chan approximates the boundaries instead wit.h circles. 

Chan' and Campbellg directly address t,he case of format,ion flying to varying degrees. Reference 8 couples 
t.he previously published tSechniques of References 1 and 7 for collision assessment m5th a new met,hod for 
performing collision avoidance maneuvers that minimizes t,he collision probab1lit.y. Reference 9 considers 
that. the error dist,ributbns may become non-Gaussian through the act.ion of the nonlinear relative motion 
dynamics, as Junkins, et al.lQ and Lee and Alfi-iendll demonstrate, and proposes a solut.ion invohing 
ellipsoidal bounds for the distributions. Campbell then compares two analytical methods that use these 
bounding ellipsoids to conservatively approxirnat,e the collision probabilit.3;, and compares these to a numerical 
solution. The first, technique is an approximate solution to the non-trivial problem of maintaining an estimate 
of t~he minimum distance beta-en ellipsoids of constant. probability mass for each satellite, as the relative 
trajectories evolve in time, and gives t,he more conservative estimate for t.he collision pr0babilit.y. If the 
ellipsoids do not, overlap, then the estimate of t.he collision probabi1it.y is bounded by the probabilit,y mass 
that is not. cont,ained wit.hin t.he ellipsoids. If the ellipsoids do overlap, t.hen Campbell's met.hod t,ransit,ions 
to a second more accurate approximation. The second met,hod is based on finding t,he ellipsoid that, bounds 
the intersection, and using this t,o perform a refinement. of t,he first t.ec!mique using a discrete set of error 



ell~psoids that contain varying probability masses. to find the largest collision probability that does not result 
from an mtersection 

IV. Approximate Solution 

Suppose that one does not. care t,o comput*e the actual probability of collision, but instead would be sa.tisified 
with a lower bound on the pr0bahilit.y of not having a collision, which would t.hen imply a conservat.ive upper 
bound on the probability of collision. Suppose further that this bound on t,he colhsion probab&ty were t,o 
prim& be used during the conceptual design phase of a format,ion flying mission, to get a sense of trades 
among such factors as relative navigation accuracy. sizes of cont.ro1 boxes, etc., rather t,han for use during 
detailed design or operations. Under such circumstances, one could t,olerat.e a fairly conservat,ive bound on 
t.he colliion probabilit.y, and in fact. such conservatism would likely be desirable. This section will show 
that one may obtain such a, bound by merely finding t.he marginal probability of collision along the relative 
position &or. However: it may be helpful t.0 describe t,he approach first. 

Referring to Figures 3 and 4, imagine dividing t,he space cont,aining the avoidance region, and some 
specified, central portion of the error &ribut.ion, by a surface separating these two regions. If the relative 
trajectory cont.ains loops or cusps, this surface may be quite topologically complex. Unlike t.he closed 
surfaces decribed in Reference 7, the surface this work imagines need only &\$de t.he space int.0 tR;o regions, 
one containing a specified portion of t,he probabilit,y mass and the other containing t.he avoidance region. 
The dotted lines in Figure 4 indicat,e cross-sections of planes tangent t,o such a surface. -4t any given point in 
time. t,he normal of such a tangent. plane is t,he relative posit.ion vector. Now, at any instant, the probability 
mass bhat is further fiom the avoidance region than the nominal relative position, can only decrease the 
probability of collision at t,hat inst.ant, so one need not, consider it. at. that. instant.. Therefore, since the 
nominal relative posit.ion is the center of the error distrihut,ion, one need only consider the half of it,s mass 
t,ha.t. is closer to the avoidance region. Within this half, the region het,ween t~he nominal relative position and 
t.he plane tangent to the avoidance regioq and cent,ered along the axis of the relative posit.ion, will cont.ain 
any tails of the distribution that. extend toward t,he avoidance region. It is only the probability mass that. 
extends beyond this region that contributes to collision probability at any particular instant. Integration 
over t.his region results in the marginal probabilit.y along t,he relative position. Clearly: t~he vast majority 
of this mass does not overlap t,he avoidance region, making this approach a coarse estimate of t.he collision 
probability. However, if one views Figures 3 and 4 as typical of the desired hjectory of a format.ion flying 
mission. i.e. the size of t,he avoidance region is of t,he same order as the uncertainty of t.he relative posit.ion. 
and the separat,ion between these is of at, least. this order. t.hen very little mass exist.s in t,his region, and 
including it in the probability of collision will not. contribut~e much to overestimating the collision pr0babilit.y. 
Sit.uat.ions such as these are exactly the ones that the met.hod of Reference 4 fails to handle. In t,he converse 
sit.uation, Reference 3 provides a highly accurate and efficient. t,eehnique. 

Before describing t.he coarse met,hod further. since t,he definit,ion of t,he error function is not always 
consist,ent,, n0t.e t,hat in t.his work. it.s definition is 

erf(k) = - e 2 F d r  
&a J*k* -ka -Iz2 

To compute this integral in Matlob, use erf(k/sqrt(2)); to compute it, in Excel, use NORMDISTS(k) - 
NOFMDISTS(-k). Next, let 

C(T) = [ c ~ ( T )  E ~ ( T )  i3(~)] ; (17) 

and let. u, v, and 20 represent coordinates along the SI, 152, and E3 axes, respectively; t.hen, the relat.ive 
posit,ion error and its covariance project,ed onto the conjunction coordinates are e,(T) = CT(T)e(T)  and 

The density function of the Conjunction frame errors, assuming a Gaussian distribution is.12 
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From Figures 3 and 4. the total probabihty mass %-between" the nommal relative position and the edge 
of the avoidance remon is 

futu.(u,z'. U T .  ~)dudvdw. 

note that 

is just. t,he marginal densit.y over u, which is bhe project,ion of t.he densit,y onto the E 1  axis, as the shading of 
this axis in Figures 3 and 4 indicat.e. As a result,, the total "in-between" probability mass is 

where u' is along El and has as its origin the center of the distribution. and 

k = (IlFll - a) /nu.  

Dropping the pnme notation, it is clear from the symmetry of the Gaussian distribution that 

fu(u. r)du 

and 

.i21sol the true probability of collision, p,, is bounded by 

Therefore, backtracking through Eqs 25, 24, 23. and 21. the coarse bound is finally 

1 1  
p ,  < - - -erf(k) 2 2  

The sequel provldes examples of how the coarse bound compares Kith Chan's method. and of hoK to use 
Eq 21 111 the prelmnary design of a formation filing mssion 

V. Examples 

Table 1 illustrat,es several two-dimensional scenarios, and compares the coarse method wit,h the method 
of Reference 4. The first two columns are taken from Reference 4. Clea.rly. t.he coarse method is far  t,oo 
consen-at.ive for t.he cases in which Chan's method works well, which t.he first three columns illustrate. This 
is most clear in the example that t,he first column describes. Here the shaded region, over which t,he coarse 
method integrates, covers nearly half of t.he highest. density portions of t.he distribution, while the act.ual 
avoidance region, although it is in a high density region, is quite small. Similar t.hough less drastic inclusions 
of extra. density occur in the examples that. columns t.wo a.nd three describe. However, as the last. t.wo columns 
show, t.he coarse appears to produce quit,e reasonable bowids on the collision probability for cases t,hat, may 
be more typical for format,ions, in which a relatively larger avoidance area is nominally going t.0 be kept, n7ell 
out,side t.he higher densit,y portions of the relat,iye error dL5tribut.ion. Note also t,hat the error bounds on 
Cha.n's niet,hod indicate t.hat, it, is not producing reliable approximations in t,hese cases. 

The coarse method also produces less consenative and more accurat,e bounds wheneyer the avoidance 
region covers a sipficant port.ion of t,he higher densit.y port.ions of the error distribution. For example, if one 
increases the size of t.he avoidance region in column one of Table 1 to t,he order of t,he st,andard deviation, 
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Table 1. Examples comparing several sceuatios. The gray-~haded region is the area over which the coarse 
method integrates. The red-shaded region approximates the In density envelope. The directions x and L are 
&ng the major and minor as of the density in the conjuction plane. The row% labeled "Chan" USC thc 
methods of Reference 4, and include bounds which are a good indicator as to when that method fails. 

1111 IC-? 

I mi 

or moves the avoidance regions of columns four and five closer to the origin, the coarse method will agree to 
w i t h  a few percent or het.ter with quadrat,ure. In such cases: Chan's method may produce error bounds 
that. are on the order of *lo5. 

Table 2 illust.rates a design drade for a simple case of t.he problem t.his paper addresses. In this example. 
t,wo satellites are to form a %ring of pearls" or in-track formation in a. nearly circular orbit., wit,h some 
nominal separabion. When t,he mission flies. navigation and maneuver execution errors, as well as unmodeled 
perturbations, will preclude t.he sat.ellit,es from reaching exactly the relat.ive orbits that the mission planners 
desire, so t,hat, over time t,hey will drift off st.at.ion. Errors and perturbat.ions t,liat affect t.heir relat,ive semi- 
major axis will cause t.he fastet, drift: which will be in t.he direct,ion t.angent to t,he orbit.s, i.e. the in-t.rack 
direction. Gottlieb et. a1.13 studied a similar problem, and showed that unless t.he semi-major axis errors 
of t,he orbit determinat.ion solutions for spacecraft in a low Earth orbit constellation are on the order of a 
fen- tens of met.ers or bet,t.er, it may be safer not, t,o maneuver for collision avoidance at all. In any case, 
during mission operat,ions, accurate comput.at,ion of collision probability is essent,ial t.o avoid false alarms 
t,hat. would waste fuel, or m i d  detections that. could jeopardize t.he mission. During the prelinlinaq design 
phase however, conservative bounds on t,he collision probability are adequate for comparisons such as t,hose 
in Table 2. From t.he table, it is easy t.0 see the boundary at, which one may trade between predictive 
navigation accuracy and nominal minimum approach distance, while keeping t.he collision probabilit,y small. 

Even for more general formations, one may follow a procedure similar t.o t.hat, just, described to get a rough 
sense of t.he t,rade between navigat.ion accuracy? minimum approach distance, and collision probabilit,y. since 
errom in relat,ive semi-major axis will be the largest. source of relative drift, and hence t.he most significant 
cont.ributor t.0 t,he collision probabilit,y. For non-circular orbits, the refat.ionsbip bet,ween in-track drift per 
revo1ut.ion and senli-major axis error depends on where in t,he orbit. one evaluates the relat.ionsllip. In general. 
if one eva1uat.es the drift at t,he t.rue anomaly fo every orbit. t,hen 

(27) 

nhich will bp a maxmuni at penapse and a m i m u m  at apoapse Tables 3 and 4 illustrate these bounds 



Pc [%I 
c r ~ ~ [ m ]  uas[m] 

1 9.4 
5 47 
10 94 
15 141 
25 236 

for the trade space of a highly elliptical orbit formation. Rith a much larger avoidance region 

Table 3. Coarse upper bound on probability of collision at apoapse, for an avoidance radius of 200 meters and 

a m 1  
500 275 150 75 
0.00 0.00 0.00 0.00 
0.00 0.00 0.10 > 1 
0.00 0.21 > 1 > 1 
0.02 > 1 > 1 > 1 
> 1  >1  > 1  > 1  

a prediction inter* of one orbit -period, for e = @.e. 

P C l W  

aaa[m] a ~ ~ [ m ]  
5 16 
25 79 
50 160 
75 210 
125 390 

D[mI 
2000 1100 600 300 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 > 1 
0.00 0.00 0.51 > 1 
0.00 0.01 > 1 > 1 
0.00 > 1 > 1 >1  

Table . 
and a prediction interval of one orbit period, for e = 0.8. 

Coarse upper bound on probability of collision at periapse, for an avc 

P J W  
uaa[m] ups[m] 

5 140 
25 710 
50 1400 
75 2100 
125 3530 

a m 1  
2O000 11000 6000 3000 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 > 1 
0.00 0.00 0.31 > 1 
0.00 0.11 > 1 > 1 

nce radius of 200 meters 

An additional step one could consider is to compute t.he statistics of the t,ime bet,ween collision avoidance 
maneuvers. Reference 14 describes a t echque  for determining the pr0babilit.y density of t,he time for the 
spacecraft to drift a specified relative distance, as a funct.ion of the rat.io of D and U A ~ .  Based on the 
results above, one could spec* a limit. on t,he size of the relat.ive "cont.ro1 box" in which t.he satellites must. 
st.at,ion-keep, to  maintain the pr0babilit.y of collision within a given upper bound. 

Although one could imagine a more rehed  set of analysis t.hat incorpora.t,es nominal relat,ive motion 
t.rajectories and the results of navigat.ion system covariance analysis. for such an a.pproach, the use of the 
coarse collision pr0babilit.y bound would not be just,ified. In the context of these more detailed analysis 
methods, quadrat,ure, monk carlo analysis, and/or t,he use of any of the more accurate approximate met.hods 
available from the literature would better serve the analyst's purpose. 

VI. Summary 

This work has proposed a coarse upper bound for estimating the collision probabllity between tao spacecraft 
that 1s suitable €or use 111 the prelmnaxy design phase of satellire formations It produces reasonable bounds 
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on the probabihty for cases whch Chan’s otheraise supenor techmque is not designed to cover Because the 
bound can he hghly conservative, it 15 not appropriate for operational scenarios or detailed design problems. 
as it coidd generate an excesl\y fake alarm rate 3r cx-erly conservative d a w ,  resped~.dy. under some 
condtions However. it is a convement and slmple approach for rapidly examnmg the boimdanes m the 
trade space of navigation accuracy, mmmum nomnal approach, and collision probability It also probides a 
complementary analysis tool to the emsting ana1l;tical method that Chan has developed 
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